Three-dimensional hybrid networks based on aspartic acid

ANUPAMA GHOSH^{1,2,*} and R A SANGURAMATH²

¹Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 ²Chemistry and Physics of Materials Unit and CSIR Centre of Excellence in Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064 e-mail: anupamag@jncasr.ac.in

Abstract. Three-dimensional achiral coordination polymers of the general formula $M_2(D, L-NHCH (COO)CH_2COO)_2 \cdot C_4H_4N_2$ where M = Ni and Co and pyrazine acts as the linker molecule have been prepared under hydrothermal conditions starting with [M(L-NHCH(COO)CH_2COO) \cdot 3H_2O] possessing a helical chain structure. A three-dimensional hybrid compound of the formula $Pb_{2.5}[N\{CH(COO) CH_2COO\}_22H_2O]$ has also been prepared hydrothermally starting with aspartic acid and Pb(NO₃)₂. In this lead compound, where a secondary amine formed by the dimensional organic connectivity.

Keywords. Aspartic acid; hybrid compounds; nickel aspartate; lead aspartate; achiral frameworks.

1. Introduction

Open-framework hybrid networks involving metal silicates, phosphates and sulphates have been areas of great interest in the past few decades.¹⁻³ Much attention is being paid in the last few years to organicinorganic hybrid frameworks formed by metal carboxylates and phosphonates⁴⁻⁷ because of their structural diversity and possible applications in catalysis^{8,9}, separation^{10,11} and hydrogen storage.^{12,13} Natural amino acids have been used extensively to form coordination polymers with transition metals since both the carboxylate and the amino groups can coordinate to the metal depending upon the pH of the medium.¹⁴⁻¹⁶ Aspartic acid, NH₂CH(COOH)CH₂COOH, is an acidic amino acid with one amino and two carboxvlic acid groups. As these functional groups are capable of binding to the metal centres in different coordination modes it is exploited greatly to form hybrid metal-organic framework structures. Chiral and achiral metal aspartates with extended structures have been reported in the recent literature.^{17–19} In the present work, we report two metal-organic framework structures derived from aspartic acid. We report a three-dimensional racemic structure of the formula $Ni_2(D, L-NHCH(COO)CH_2COO)_2 C_4H_4N_2$, I, by connecting helical nickel aspartate chains with the bi-dentate aromatic linker pyrazine. We have obtained an analogous cobalt compound of the formula $Co_2(D, L-NHCH(COO)CH_2COO)_2.C_4H_4N_2$, II, starting with cobalt aspartate. We also report a threedimensional hybrid lead compound of the formula $Pb_{2.5}[N{CH(COO)CH_2COO}_2.2H_2O]$, III, resulting from the hydrothermal reaction between Pb(NO₃)₂ and aspartic acid, where the ligand is a secondary amine formed by the dimerisation of aspartic acid. In III, there is two-dimensional inorganic connectivity and one-dimensional organic connectivity.

2. Experimental

2.1 Synthesis and initial characterization

In order to prepare Ni₂(D, L-NHCH(COO)CH₂COO)₂· C₄H₄N₂, **I**, 54·9 mg of Ni-asp [Ni(L-NHCH(COO) CH₂COO)·3H₂O] were dissolved in water (3 mL)ethanol (2 mL) mixture to which pyrazine (16·90 mg) was added. The resultant solution with Ni-asp: pyrazine ratio of 1:1 was stirred for 1 h and transferred to a 23 mL PTFE-lined acid digestion bomb and heated at 150°C for 48 h. The pH of the solution was kept at around 5–6. Shiny bluish green coloured crystals so obtained were vacuum filtered and washed with water.

The cobalt analogue of I, was prepared as follows. 131.0 mg of Co-asp $[Co(L-NHCH(COO)CH_2COO)$.

^{*}For correspondence

 $3H_2O$] were dissolved in water (5 mL)-ethanol (5 mL) mixture to which pyrazine (80.80 mg) was added. The resultant solution with Co-asp : pyrazine ratio of 1 : 2 was stirred for 1 h and transferred to a 23 mL PTFE-lined acid digestion bomb and heated at 150°C for 48 h. The pH of the solution was kept at around 5–6. Dark red coloured solid so obtained were vacuum filtered and washed with water.

Pb_{2.5}[N{CH(COO)CH₂COO}₂2H₂O], III, was prepared as follows. 334.5 mg of Pb(NO₃)₂ were dissolved in water (5 mL) to which L-aspartic acid (203.70 mg) was added. To the resultant mixture, with a Pb(NO₃)₂:aspartic acid ratio of 1:1.5, 1 molar NaOH solution was added drop-wise to make the pH of the solution equal to 5. The solution was stirred for an hour and transferred to a 23 mL PTFE-lined acid digestion bomb and heated at 150°C for 72 h. Beautiful colorless crystals so obtained were vacuum filtered and washed with water.

The precursor materials Ni-asp and Co-asp were prepared as follows. A 1:1 mixture of Ni(Co)Cl₂· $6H_2O$: aspartic acid was taken in a vial and dissolved in water. Triethylamine was added to maintain the pH at around 5. The resultant mixture was kept on a hot water bath for slow evaporation. After 3 days green crystals of the composition [Ni(L-NHCH(COO)CH₂COO)·3H₂O] and pink coloured crystals of [Co(L-NHCH(COO)CH₂COO)·3H₂O] were obtained. The crystals were vacuum filtered and washed with water. These precursors are similar in structure.¹⁴

Initial characterization of the compounds I, II and III were carried out by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), and IR spectroscopy. PXRD patterns indicated the products to be new materials and monophasic, the patterns being consistent with those generated from singlecrystal X-ray diffraction. Elemental analysis of I, II and III were satisfactory. Elemental analysis for I: C, 31.7%; H, 2.7% N, 12.3%. Observed: C, 31.8%; H, 3.7% N, 12.1%; for II: C, 31.7%; H, 2.7% N, 12.3%. Observed: C, 31.9%; H, 3.1% N, 12.0%; for III: Calculated: C, 12.5%; H, 1.3% N, 1.8%. Observed: C, 13.0%; H, 1.2% N, 1.9%; Infrared spectra of I. II and III show characteristic bands in the region 1400–1600 cm^{-1} and 3300–3400 cm^{-1} due to carboxylate and amine group stretching vibration of the aspartate moiety. Beside that, bands due to C-H and C-C stretching and bending vibrations have also been characterized.²⁰ A broad band in the 2800- 3200 cm^{-1} region in the spectra of those compounds indicates the presence of extensive hydrogen bonding.

Thermogravimetric analysis of above compounds was carried out under constant flow of O_2 at a heating rate of 5°C min⁻¹ in the temperature range 30–900°C. Compound I showed a two-step weight loss corresponding to the loss of aspartic acid and pyrazine molecules in the range 350–450°C and 450–550°C (obs = 74·1%, calcd = 74·8%). Compound II showed the same type of TGA curve. Compound III showed a two-step weight loss corresponding to the loss of water molecules and aspartic acid dimer molecule in the range 200–450°C and 450–550°C (obs = 33·3%, calcd = 35·1%).

2.2 Single crystal structure determination

Suitable single crystals of I and III were carefully selected under a polarizing microscope and glued at the tip of a thin glass fibre with cyano-acrylate (superglue) adhesive. Single crystal structure determination by X-ray diffraction was performed on a Bruker Smart-CCD diffractometer equipped with a normal focus, 2.4 kW sealed tube X-ray source (Mo-K_{α} radiation, $\lambda = 0.71073$ Å) operating at 50 kV and 35 mA. A hemisphere of intensity data was collected at room temperature with ω space scans (width of 0.30° and exposure time of 10 or 20 s per frame). Pertinent experimental details of the structure determination for compounds I and III and are presented in table 1.

The structures were solved by direct methods using SHELXS-86,²¹ which readily established the heavy atom position (Pb and Ni) and facilitated the identification of the light atoms (O, N, C, H) from difference Fourier maps. An empirical absorption correction based on symmetry equivalent reflections was applied using the SADABS programme.²² All the hydrogen positions were initially located in the difference Fourier maps and the hydrogen atoms were placed geometrically and held in the riding mode for the final refinement. With the single crystal X-ray data collected at room temperature, few of the hydrogen atoms of the water molecules of III could not be located from the difference Fourier maps. The last cycle of refinement included atomic positions for all the atoms, anisotropic thermal parameters for all the non-hydrogen atoms and isotropic thermal parameters for all the hydrogen atoms. Full-matrix-least-squares structure refinement against

Parameters	Ip	Ш
Empirical formula	$Ni_{2}N_{4}C_{12}H_{12}O_{8}$	$Pb_{2.5}NC_8O_{10}H_{10}$
Crystal system	Orthorhombic	Monoclinic
Space group	Pnn2	<i>P</i> 2(1)
Crystal size (mm)	$0.28 \times 0.38 \times 0.18$	$0.28 \times 0.18 \times 0.16$
a (Å)	15.4137(6)	9.6521(6)
$b(\dot{A})$	6.5818(2)	9.7770(6)
$c(\dot{A})$	7.8808(3)	10.0407(6)
$\alpha(\circ)$	90.0	89.9270(10)
$\beta(\hat{\mathbf{o}})$	90.0	70.0980(10)
$\gamma(^{\circ})$	90.0	62.9510(10)
Volume (Å ³)	799.51(5)	780.04(8)
Z	4	5
Formula mass	203-48	250.22
$\rho_{\rm calc} (\rm g \ \rm cm^{-3})$	2.113	4.794
$\lambda (MoK\alpha) Å$	0.71073	0.71073
$M(\mathrm{mm}^{-1})$	5.796	48-418
θ range (°)	2.64 to 27.89	0.999 to 25.59
Total data collected	4266	10664
Limiting indices	$-20 \le h \le 11, -5 \le k \le 8, -9 \le 1 \le 10$	$-11 \le h \le 11, -11 \le k \le 11, -12 \le 1 \le 12$
Unique data	1754	2926
Observed data $(I > 2\sigma(I))$	1266	2542
Refinement method	Full-matrix least squares on $ F^2 $	Full-matrix least squares on $ F^2 $
R _{int}	0.0300	0.0382
<i>R</i> indexes $[I > 2\sigma(I)]$	$R_1 = 0.0465, wR_2 = 0.1186$	$R_1 = 0.0521, wR_2 = 0.1391$
R (all data)	$R_1 = 0.0801, wR_2 = 0.1534$	$R_1 = 0.0629, wR_2 = 0.1575$
Goodness of fit	1.082	1.186
No. of variables	118	197
Largest difference map peak and hole e.Å ^{-3}	0.712 and -0.749	5.817 and -1.998

Table 1. Crystal data and structure refinement parameters for compound I and III^a.

^a $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|;$ ^b $wR_2 = \{\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2] \}^{1/2}, w = 1 / [\sigma^2(F_o)^2 + (aP)^2 + bP], P = (F_o^2 + 2F_c^2) / 3, a = 0.0856 \text{ and } b = 0.0000 \text{ for I} a = 0.0890 \text{ and } b = 7.4879 \text{ for III}$

^bUnit cell dimensions of **II**, the cobalt analogue of **I** are a (Å) = 16.01, b (Å) = 6.81, c (Å) = 8.34, α (°) = 90.0, β (°) = 90.0, γ (°) = 90.0, volume (Å³) = 909.0

 $|F^2|$ was carried out using the SHELXTL-PLUS package of programs.²³

3. Results and discussion

We have prepared an achiral three-dimensional coordination polymer Ni₂(D, L-NHCH(COO)CH₂COO)₂· C₄H₄N₂, **I**, by the hydrothermal reaction of nickel aspartate trihydrate salt Ni(L-NHCH(COO)CH₂COO)· 3H₂O possessing a chiral one-dimensional helical extended chain structure with pyrazine. The asymmetric unit of I (figure 1a) contains 13 non-hydrogen atoms, with one Ni atom, one aspartate molecule and half of the pyrazine ligand. The coordination number Ni is six and coordinated to carboxylate oxygen and nitrogen atoms of the aspartic acid as well as nitrogen atom of pyrazine molecule. All the oxygen and nitrogens take part in coordination and aspartic acid act as quinque dentate ligand. At this high temperature L-acid undergoes racemisation and both the L- and D-acid exist in the structure which is reflected on the achiral space group of the crystal. Water molecules of the nickel aspartate trihydrate are replaced by aspartic acid oxygens and pyrazine nitrogens to give a three-dimensional structure. In I, L- and D-nickel aspartate helices are joined together by carboxylate bridges to form the bc plane of the crystals. These layers are joined together by pyrazine linkers in a zigzag fashion along the *a* direction of the unit cell to give a porous threedimensional network (figure 1b). The polyhedral view of the structure down the *c* axis of the unit cell shows rectangular pores (figure 1c). The inorganic and organic connectivities in I are zero and three respectively which can be specified as the I^0O^3 type. The Ni–O bond length in the nickel aspartate moiety of I is in the range of 2.038(0)-2.101(0) Å (average 2.068 Å) with Ni–N bond length being 2.079(0) Å. The average C–O, C–C and C–N distances of the aspartic acid are 1.258, 1.577 and 1.552 Å respectively. The Ni–N (pyrazine) bond length is 2.098 Å while the average C–N distance in the pyrazine ring is 1.329 Å.

Figure 1. (a) ORTEP plot of Ni(D, L-NH-CH(COO) CH₂COO).C₂H₂N, I. Thermal ellipsoids are shown at 50% probability. Only the asymmetric part is labelled. (b) Three-dimensional structure of I viewed along the c axis of the unit cell. Hydrogen atoms are not shown for clarity. (c) Polyhedral view of I viewed along the b axis of the unit cell.

Figure 2. (a) ORTEP plot of $Pb_{2.5}[N\{CH(COO)CH_2 COO\}2H_2O]$, III. Thermal ellipsoids are shown at 50% probability. Only the asymmetric part is labelled. (b) Three-dimensional structure of III viewed along the *c* axis of the unit cell. Hydrogen atoms are not shown for clarity. (c) Polyhedral view of III viewed along the *b* axis of the unit cell.

The cobalt analogue $Co_2(D, L-NHCH(COO) CH_2COO)_2 \cdot C_4H_4N_2$, II, is isomorphous with I and gave an identical powdered X-ray diffraction pattern. The unit cell parameters of II are given in table. 1.

We have obtained an achiral three-dimensional compound of the formula $Pb_{2.5}[N\{CH(COO) CH_2COO\}_2 2H_2O]$, III, from the high-temperature reaction of L-aspartic acid and $Pb(NO_3)_2$. This compound results from the dimerisation of aspartic acid to give a secondary amine as per the following reaction:

$$[NH_{2}CH(COO)CH_{2}COO]^{2-} + OH^{-} \rightarrow$$
$$[NH\{CH(COO)CH_{2}COO\}_{2}]^{4-} + H_{2}O$$

The asymmetric unit of III (figure 2a) contains 20 non-hydrogen atoms, with three crystallographically independent Pb atoms, two water molecules bridging the lead centers and one aspartic acid dimer molecule. The coordination number of Pb1 is seven and coordinated to water molecules as well as carboxylate oxygens of the ligand moiety while coordination number of Pb2 is six and is ligated through water molecules as well as the amine nitrogen and caboxylate oxygens of the ligand. Both of the lead atoms have somewhat distorted geometry and shows hemidirectionality. Pb3 is holodirectional with half occupancy in the asymmetric unit and has a regular eight coordinated geometry formed by both water and carboxylate oxygen atoms. Because of the high temperature and the basic condition of the reaction one of the amine hydrogens gets replaced by another aspartic acid moiety and forms the dimeric structure which is nothing but a secondary amine. Pb1 and Pb2 are joined together by carboxylate oxygens to form hybrid double chains along the *a* direction of the unit cell. These double chains are joined with one another through Pb–O–Pb linkage involving Pb3 and water oxygens to form hybrid layers parallel to the *ac* plane of the unit cell. These hybrid layers are joined together by ligand moiety through amine nitrogen and carboxylic oxygen atoms along the b direction of the unit cell to give the final threedimensional I^2O^1 hybrid structure (figure 2b). All the oxygen and the nitrogen atoms of the ligand are coordinated here. Polyhedral view of the structure shows rectangular pores formed by the threedimensional network (figure 2c). The structure clearly reveals the inversion centre symmetry as reflected on the P-1 space group of the crystal. Two

types of Pb–O bonds are present in the structure, the Pb–O (water) bonds with a average bond length of 2.684 Å, the Pb–O (carboxylate) bonds with bond lengths in the ranges 2.408(1)-2.672(1) Å (average 2.592 Å) along with Pb–N bond length being 2.518 Å. The average C–O, C–N and C–C bond distances of the di-aspartate ligand are 1.263, 1.473 and 1.533 Å respectively.

4. Conclusions

Reaction of Ni(L-NHCH(COO)CH₂COO)·3H₂O with the pyrazine linker under hydrothermal conditions gives a new compound of the formula Ni₂(D, L-NHCH(COO)CH₂COO)₂·C₄H₄N₂, **I**, with extended three-dimensional connectivity. As the cobalt analogue of **I** has a similar structure, it may be surmised that similar compounds of other transition metals can also be prepared. The hydrothermal reaction of Pb(NO₃)₂ and L-aspartic acid yields an achiral threedimensional hybrid network with two-dimensional inorganic and one-dimensional organic connectivities. The compound has the composition Pb_{2.5}[N{CH (COO)CH₂COO}₂·2H₂O] wherein a secondary amine formed by the dimerisation of aspartic acid is the ligand.

CCDC-668748 and 668747 (I and III) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retreiving.html (or from Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk

Acknowledgement

The authors are grateful to Prof. C N R Rao for suggesting the problem and his constant support and guidance.

References

- (a) Breck D W 1974 Zeolite molecular sieves (New York: Wiley); (b) Meier W M, Oslen D H and Baerlocher C 1996 Atlas of zeolite structure types (London: Elsevier)
- (a) Cheetham A K, Férey G and Loiseau T 1999 Angew. Chem. Int. Ed. 38 3268; (b) Rao C N R, Natarajan S, Choudhury A, Neeraj S. and Ayi A A 2001 Acc. Chem. Res. 34 80
- Rao C N R, Behera J N and Dan M 2006 Chem. Soc. Rev. 35 375

- (a) Rao C N R, Natarajan S, Vaidhyanathan R 2004 Angew. Chem. Int. Ed. 43 1466; (b) Ocwig N C, D-Friedrichs O, O'Keefe M and Yaghi O M 2005 Acc. Chem. Res. 38 176; (c) Forster, P M and Cheetham A K 2003 Top Cat. 24 79
- 5. Cheetham A K, Rao C N R and Feller R K 2006 Chem. Commun. 4780
- 6. Kitagawa S, Kitaura R and Noro S 2004 Angew. Chem. Int. Ed. 43 2334
- 7. Clearfield A 1998 Prog. Inorg. Chem. 47 371
- Clearfield A and Wang Z K 2002 J. Chem. Soc., Dalton Trans. 2937
- 9. Fujita M, Kwon Y J, Washizu S and Ogura K 1994 J. Am. Chem. Soc. 116 1151
- Kepert C J, Prior T J and Rosseinsky M J 2000 J. Am. Chem. Soc. 122 5158
- 11. Chen B, Liang C, Yang J, Contreras D S, Clancy Y L, Lobkovsky E B, Yaghi O M and Dai S 2006 *Angew. Chem. Int. Ed.* **45** 1390
- 12. Zhao X B, Xiao B, Fletcher A J, Thomas K M, Bradshaw D and Rosseinsky M J 2004 *Science* **306** 1012
- 13. Wong-Foy A G, Matzger A J and Yaghi O M 2006 J. Am. Chem. Soc. **128** 3494
- 14. (a) Antolini L, Menabue L, Pellacani G C and Marco-trigiano G 1982 *Dalton Trans.* 2541; (b) Schmidbaur H, Bach I, RiedeMuller J, Helbig J and Hopf G 1988 *Chem. Ber.* 121 795; (c) Doyne T H, Pepinsky R and Watanabe T 1957 *Acta Crystallogr.* 10 438; (d) Kryger L and Rasmussen S E 1973 *Acta Chem. Scan.* 27 2674

- (a) Zhang Y, Saha MK and Bernal I 2003 Cryst. Eng. Commun. 5 34; (b) Mizutani M, Maejima N, Jitsukawa K, Masuda H and Einaga H 1998 Inorg. Chim. Acta 283 105; (c) Flook R J, Freeman H C and Scudder M L 1977 Acta Crystallog. B33 801; (d) Gramaccioli C M 1966 Acta Crystallogr. 21 600
- 16. (a) Dan M, Rao C N R 2005 *Chem. Eur. J.* 11 7102;
 (b) Dan M 2004 *J. Mol. Struct.* 706 127 (and references therein)
- Anokhina E V and Jacobson A J 2006 J. Am. Chem. Soc. 128 9957
- Anokhina E V and Jacobson A J, Go Y B, Lee Y and Vogt T 2006 J. Am. Chem. Soc. 128 9957
- Vaidhyanathan R, Bradshaw D, Rebilly J N, Barrio J P, Gould J A, Berry N J and Rosseinsky M J 2006 Angew. Chem. Int. Ed. 45
- 20. Nakamoto K 1978 Infrared and Raman spectra of inorganic and coordination compounds (New York: Wiley Interscience)
- 21. (a) Sheldrick G M 1986 SHELXS-86 program for crystal structure determination (Gottingen, Germany: University of Gottingen); (b) Sheldrick G M 1990 Acta Crystallogr. A46 467
- 22. Sheldrick G M 1994 SADABS: Siemens area detector absorption correction program (Gottingen, Germany: University of Gottingen)
- 23. Sheldrick, G M 1993 SHELXS-93 program for crystal structure solution and refinement (Gottingen, Germany, University of Gottingen)